speed regulator - meaning and definition. What is speed regulator
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is speed regulator - definition

THEOREM
Regulator of an algebraic number field; Regulator (mathematics); Regulator of a number field; Dirichlet unit theorem; Higher regulator; Stark regulator; P-adic regulator

Linear–quadratic regulator         
LINEAR OPTIMAL CONTROL TECHNIQUE
Linear-quadratic control; Dynamic Riccati equation; Linear-quadratic regulator; Quadratic quadratic regulator; Quadratic–quadratic regulator; Quadratic-quadratic regulator; Polynomial quadratic regulator; Polynomial–quadratic regulator; Polynomial-quadratic regulator; Linear quadratic regulator
The theory of optimal control is concerned with operating a dynamic system at minimum cost. The case where the system dynamics are described by a set of linear differential equations and the cost is described by a quadratic function is called the LQ problem.
Metropolis Rescore         
AUSTRALIAN COMPOSER
Mr Speed; Mister Speed; Ben Speed; The New Pollutants; The new pollutants; Metropolis rescore; Benjaminspeed; Benjamin speed; Ben speed; Benspeed; Street Angel (soundtrack); Speed, Benjamin
Metropolis Rescore is a soundtrack by The New Pollutants for the silent film Metropolis. The original version of the soundtrack was for the 118-minute, digitally restored version which was released in 2002 by the F.
Speed flying and speed riding         
  • 200px
  • Speed riding video
  • 130px
Speed glider; Speed Glider; Speed riding; Ski Gliding; Speed Wing; Speed gliding; Speed flyer; Speedriding; Speedflying; Speed-flying; Speed-gliding; Speed wing; Speed flying
Speed-flying and speed riding are advanced disciplines of paragliding that use a small, high-performance paraglider wing to quickly descend heights such as mountains. Speed flying and speed riding are very similar sports; speed flying is when the speed wing is foot-launched, while speed riding is a winter sport done on skis.

Wikipedia

Dirichlet's unit theorem

In mathematics, Dirichlet's unit theorem is a basic result in algebraic number theory due to Peter Gustav Lejeune Dirichlet. It determines the rank of the group of units in the ring OK of algebraic integers of a number field K. The regulator is a positive real number that determines how "dense" the units are.

The statement is that the group of units is finitely generated and has rank (maximal number of multiplicatively independent elements) equal to

where r1 is the number of real embeddings and r2 the number of conjugate pairs of complex embeddings of K. This characterisation of r1 and r2 is based on the idea that there will be as many ways to embed K in the complex number field as the degree n = [ K : Q ] {\displaystyle n=[K:\mathbb {Q} ]} ; these will either be into the real numbers, or pairs of embeddings related by complex conjugation, so that

Note that if K is Galois over Q {\displaystyle \mathbb {Q} } then either r1 = 0 or r2 = 0.

Other ways of determining r1 and r2 are

  • use the primitive element theorem to write K = Q ( α ) {\displaystyle K=\mathbb {Q} (\alpha )} , and then r1 is the number of conjugates of α that are real, 2r2 the number that are complex; in other words, if f is the minimal polynomial of α over Q {\displaystyle \mathbb {Q} } , then r1 is the number of real roots and 2r2 is the number of non-real complex roots of f (which come in complex conjugate pairs);
  • write the tensor product of fields K Q R {\displaystyle K\otimes _{\mathbb {Q} }\mathbb {R} } as a product of fields, there being r1 copies of R {\displaystyle \mathbb {R} } and r2 copies of C {\displaystyle \mathbb {C} } .

As an example, if K is a quadratic field, the rank is 1 if it is a real quadratic field, and 0 if an imaginary quadratic field. The theory for real quadratic fields is essentially the theory of Pell's equation.

The rank is positive for all number fields besides Q {\displaystyle \mathbb {Q} } and imaginary quadratic fields, which have rank 0. The 'size' of the units is measured in general by a determinant called the regulator. In principle a basis for the units can be effectively computed; in practice the calculations are quite involved when n is large.

The torsion in the group of units is the set of all roots of unity of K, which form a finite cyclic group. For a number field with at least one real embedding the torsion must therefore be only {1,−1}. There are number fields, for example most imaginary quadratic fields, having no real embeddings which also have {1,−1} for the torsion of its unit group.

Totally real fields are special with respect to units. If L/K is a finite extension of number fields with degree greater than 1 and the units groups for the integers of L and K have the same rank then K is totally real and L is a totally complex quadratic extension. The converse holds too. (An example is K equal to the rationals and L equal to an imaginary quadratic field; both have unit rank 0.)

The theorem not only applies to the maximal order OK but to any order OOK.

There is a generalisation of the unit theorem by Helmut Hasse (and later Claude Chevalley) to describe the structure of the group of S-units, determining the rank of the unit group in localizations of rings of integers. Also, the Galois module structure of Q O K , S Z Q {\displaystyle \mathbb {Q} \oplus O_{K,S}\otimes _{\mathbb {Z} }\mathbb {Q} } has been determined.